
Journal of  Statistical Physics, Vol. 50, ?Cos. 3/4, 1988 

Passive Scalars, Three-Dimensional 
Volume-Preserving Maps, and Chaos 

Mario Feingold, ~ Leo P. Kadanoff,~ and Oreste Piro 1'2 

Received October 21, 1987 

The dynamics of a medium-sized particle (passive scalar) suspended in a general 
time-periodic incompressible fluid flow can be described by three-dimensional 
volume-preserving maps. In this paper, these maps are studied in limiting cases 
in which some of the variables change very little in each iteration and others 
change quite a lot. The former are called slow variables or actions, the latter fast 
variables or angles. The maps are classified by their number of actions. For 
maps with only one action we find strong evidence for the existence of invariant 
surfaces that survive the nonlinear perturbation in a KAM-like way. On the 
other hand, for the two-action case the motion is confined to invariant lines that 
break for arbitrary small size of the nonlinearity. Instead, we find that adiabatic 
invariant surfaces emerge and typically intersect the resonance sheet of the fast 
motion. At these intersections surfaces are locally broken and transitions from 
one to another can occur. We call this process, which is analogous to Arnold 
diffusion, singularity-induced diffusion. It is characteristic of two-action maps. 
In one-action maps, this diffusion is blocked by KAM-like surfaces. 

KEY WORDS:  Incompressible fluid; passive scalars; three-dimensional 
volume-preserving maps; action angle variables; Arnold diffusion; invariant 
structures. 

1. I N T R O D U C T I O N  

Various metal powders (e.g., aluminum) are frequently used for flow 
visualization in hydrodynamic systems'. ~1) Those powders are composed of 
tiny particles, which are driven by the velocity field of the flow u(x, y, z, t). 
Therefore, the position r(t)=(x(t), y(t),z(t)) of the powder particles 
satisfies 

/ ' = u  (1.1) 

1 James Franck Institute, University of Chicago, Chicago, Illinois 60637. 
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with different initial conditions for different particles. Ideally, the powder 
particles are small enough such that they do not perturb the velocity field 
u, but also big enough not to be undergoing a Brownian diffusive motion 
as a result of colliding with the fluid molecules. The abstract particles 
satisfying both requirements are useful idealization in fluid mechanics and 
are known in the literature as passive scalars (PS). Some local properties 
such as temperature or the density of a second fluid can be regarded under 
some conditions as PS. Therefore, the understanding of the dynamics of 
PS is important in the theory of mixing of fluids, which in turn has a 
fundamental role in fields like combustion and chemical reactions. 

For steady flows, the trajectories of the passive scalars given by 
Eq. (1.1) are nothing but the streamlines of the velocity field. Some nontur- 
bulent flow fields u lead to orderly streamlines, but in other cases even very 
simple nonturbulent flows can produce chaotic streamlines. The PS is 
then said to display "Lagrangian turbulence" as opposed to "Eulerian 
turbulence," which implies chaotic behavior in u it'self. 

The issue of the topology of streamlines in 3D, incompressible, steady, 
ideal fluid flows was first addressed by ArnoldJ 2) He proved that if the vor- 
ticity ~ (e0 = V x u) and the velocity are nowhere parallel, then Eq. (1.1) is 
integrable. That meaias that almost all possible PS trajectories (streamlines) 
lie on 2-tori. At the opposite extreme, the ABC flow 

2 = u x = A s i n z + C c o s  y (mod2rc) 

~ = u y = B s i n x + A c o s z  (mod 2re) (1.2) 

= u z = C s i n y + B c o s x  (mod2~z) 

which satisfies the Beltrami property ~o = 2u with 2 = 1, was suggested by 
Arnold as an example of a most nonintegrable case. Extensive studies of 
the ABC model have shown the coexistence of chaotic trajectories and 
KAM-like surfaces at various values of parameters. 13) From the fluid 
dynamical viewpoint, UABc is a solution of the Euler equation. 3 Arnold has 
conjectured ~3) that the way to Eulerian turbulence is facilitated by the 
preexistence of Lagrangian turbulence as opposed to regular streamlines. 

3 If a forcing term 

f = v(A sin z + C cos y, B sin x + A cos z, C sin y + B cos x) 

is introduced, then UABC is a solution of the Navier-Stokes equation as well, 

~,u + u ' V u =  - V p  + v V2u + f 

V ' u = 0  

Moreover, it has been recently shown ~4) that for large viscosity v, u,~Bc is the only stable 
solution of the Navier-Stokes equation. As the viscosity v is lowered, a sequence of bifur- 
cations is triggered, which eventually leads to Eulerian turbulence. 
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On the other hand, the influence of chaotic motion of passive scalars 
on stirring and fluid mixing has been recently investigated in two-dimen- 
sional, time-dependent flows. (5) Aref has stressed that for 2D flows the 
motion of PS in the real space is equivalent to the Hamiltonian dynamics 
of a phase space point. In fact, if g~ is the stream function, then 

= - a ~ , / a y ;  ~ = a~/ax (1.3)  

Renaming the variables (x, y, ~) -~  (p, x, H) in Eq. (1.3), we obtain the 
usual Hamilton equations for a one-degree-of-freedom system. Therefore, 
autonomous 2D flows are integrable and mixing in these systems is highly 
inefficient. When time dependence is added to the stream function, PS 
typically undergo the same kind of chaotic motion arising in non- 
autonomous Hamiltonian systems and the transport is strongly enhanced. 
This enhancement of transport is known as chaotic advection and was 
investigated both numerically (6) and experimentally. (7) For example, 
Gollub and Solomon (7) have analyzed 2D flows in the Raleigh-Benard 
system as they are modified by the onset of oscillation in the velocity field. 
They found that when the longitudinal rolls start to oscillate, the effective 
PS diffusion constant suddenly grows by more than one order of 
magnitude. 

Both autonomous and nonautonomous Hamiltonian systems induce 
volume-preserving flows in phase spaces (Liouville theorem). These phase 
spaces, of course, have an even dimensionality. In contrast, incompressible 
flows (like the A B C  model, for example) satisfy 

V . u = O  (1.4) 

and hence preserve instead volumes in the usual three.dimensional space. 
When the flow is two-dimensional, the problem simplifies to one that can 
be studied by Hamiltonian methods. Thus, the Aref and Gollub Solomon 
examples are in the same category as 2D area-preserving maps, which have 
been extensively studied. (8,9) The same is true to some extent for the A B C  
flow, because special choices of the surface of section can assure the local 
invariance of the areas. In this paper, we study the essentially three-dimen- 
sional problems that can arise when a flow of the form (1. l ) is periodic in 
time. In this case, the flow can be represented by a Poincar6 or 
stroboscopic map that is three-dimensional and volume-preserving. In 
some sense, these maps lie between N =  2 and N=-3 Hamiltonian systems. 
It is well known for N-degree-of-freedom Hamiltonians that regular motion 
is confined to N-tori. For N =- 2 Hamiltonians, the 2-tori of regular motion 
divide the 3D energy surface into an inside part and an outside one. 
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Therefore, as long as a regular 2-torus exists, chaotic motion is bounded to 
either its outside or its inside, depending on the initial condition. As the 
size e of the nonlinearity is increased, phase space will become connected 
only after the last 2-torus breakdown/1~ Even then, small portions of 
phase space (islands) remain isolated. However, their relative size decreases 
as we enter deeper into the chaotic regime. In the N =  3 case, on the other 
hand, the 3-tori cannot separate the 5D energy surface, and phase space is 
always connected. Diffusive motion for N>~ 3 is possible for arbitrarily 
small 5. This phenomenon is known as Arnold diffusion. (11) A qualitative 
continuity is still maintained with the N =  2 case, since for small e the tori 
form dense bundles, which make diffusion very slow. Actually, it has been 
shown that D oc exp(-1/~;1/2), (8,9,11) where D is the diffusion constant. 
While the N = 2 case has been thoroughly investigated, very little is known 
about N 1> 3 Hamiltonian problems. This is partly because of the difficulties 
in visualizing trajectories generated by 4D maps. 

Thus, we have two reasons for our interest in 3D volume-preserving 
maps. On one side the possible enhancement of the diffusive properties is 
important from the fluid dynamical point of view. Going from steady to 
time-periodic velocity fields also implies an increase in the Reynolds num- 
ber and therefore a step closer to the extremely hard problem of 
turbulence. (12) On the other hand, 3D maps represent intermediate cases 
between two qualitatively different behaviors. While they might display 
phenomena unknown in N = 2  Hamiltonians, their analysis should be 
simpler than the N = 3  case. However, the absence of the canonical 
structure in odd dimensions makes inapplicable most of the general results 
of the Hamiltonian theory. Very little qualitative information on the 
behavior of 3D volume-preserving maps is available in the literature. (~3~ 

To study the qualitative properties of 3D volume-preserving maps, we 
follow in the footsteps of KAM and imagine perturbations about simplified 
models in which some variables (actions) are unchanged from iteration to 
iteration and others (angles) change in each iteration. A small perturbation 
makes the actions vary slowly. We then ask about the structure of 
invariant sets in the small-perturbation case. 

Naturally, one distinguishes between two cases: maps with two actions 
and maps that have but one. The action variables are the constants of 
motion in the integrable limit of these maps. We might expect the emerging 
invariant structures to have the same codimension as the number of actions 
involved. The restriction of the maps to any of their invariant objects is a 
uniform rotation of each angular (fast) variable. The frequencies of these 
rotations are determined by the values of the actions labeling the given 
invariant object. Whenever an integer linear combination of the angular 
frequencies is commensurate with 2~z we refer to the trajectory as resonant. 
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Maps with only one action will be found to display invariant surfaces. 
These are preserved under small nonlinear perturbations in a similar 
manner to KAM tori in Hamiltonian systems. Since the frequencies of the 
two angular motions COl(1 ) and o)2(1 ) are just functions of the unique 
action, they should be constant along a given invariant surface. In this case 
the condition for resonance can be written as 

m~o1(I ) + nc%(I) = 2rck (1.5) 

where m, n, and k are arbitrary integers. The surfaces on which Eq. (1.5) is 
satisfied break and layers of chaotic motion emerge instead. These layers 
will be bounded by the intact invariant surfaces. As a consequence, single 
trajectories cannot diffuse throughout the available space. 

On the other hand, when there are two conserved action variables the 
invariant surfaces are lines. These do not separate the space. Hence, when 
one turns on a small perturbation one might expect to find Arnold-like 
diffusion through bundles of invariant lines. In fact, we do find unbounded 
diffusive motion, but engendered by a different mechanism. To our sur- 
prise, we find that almost all invariant lines break under arbitrarily small 
perturbations and are adiabatically replaced by invariant surfaces. We will 
show, however, that the frequency of the angular motion varies over the 
invariant surfaces. Moreover, the angular resonances are defined in this 
case by the equation 

no)(Ii, 12) = 2rck (1.6) 

where I~ and 12 are the actions and rn and k are arbitrary integers. In 
contrast with the one-action case, the resonance sheets defined in (1.6) 
typically intersect a continuous set of adiabatically invariant surfaces. A 
local breakdown of the invariant surfaces occurs at the intersections, while 
the remaining part of the surface survives at a given order of the pertur- 
bation expansion. Surfaces are connected to each other through the 
resonances, allowing trajectories to diffuse over all space. 

The extreme cases of three-action maps or three-angle ones are less 
interesting. For the former, the conservation requirement for three 
variables implies that the integrable case is the identity map (every point of 
the space is invariant). Small perturbations of the identity are actually 
flows instead of maps and this behavior has been studied beforeJ 3) In turn, 
three-angle maps do not display any invariant structure of dimension less 
than three and generically chaotic behavior is expected. Finally, we will 
conclude that the dynamics of 3D maps is governed by both chaotic 
trajectories and invariant surfaces, while the invariant lines are responsible 
of the global ordering of the space. 
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The paper is organized as follows. In Section 2 the general framework 
of 3D volume-preserving maps is presented. We then derive our models 
and analyze their integrable limits, fixed points, and cycles. We end the 
section with a discussion on some special properties of Liapunov numbers 
for reversible 3D maps. In Section 3 numerical and perturbative methods 
are used to describe both the KAM-like behavior of nearly integrable one- 
action maps and the existence of diffusive motion at arbitrarily small non- 
linearities in the two-action case. In Section 4 we discuss and summarize 
our findings. 

2. GENERAL PROPERTIES OF 3D M A P S  

The standard map 

I ' = I + K s i n O ,  0 ' = 0 + I '  (2.1) 

which can be derived from the Hamiltonian of a periodically kicked rotor, 
is usually considered a representative of 2D area-preserving maps. For 
small values of the nonlinearity parameter K, it can be described by saying 
that it has an action variable that is characterized by a zero average 
variation and an angle variable with the frequency determined by the 
action. In the integrable limit given by K = 0 the motion consists of angular 
rotation on invariant lines labeled by the action, which is fixed. For  small 
K, the variation in I is bounded, while that in 0 is "linear." When con- 
sidering 3D maps, the missing canonical structure obscures the difference 
between angle and action variables. However, we will pursue the action- 
angle classification to these maps following the guidelines suggested by the 
case of the standard map. We will consider as action-like those variables 
that label the invariant structures of the integrable cases. The angles are the 
variables parametrizing the motion on the invariant objects, and their 
associated frequencies are determined by the actions. Close to integrability, 
the actions are the slowly varying variables, while the angles are the fast 
ones. Of course, the nature of our variables changes as we pass from one 
region in parameter space to another. This reflects the lack of canonical 
structure in our problem. 

A general form for 3D volume-preserving maps that are continuous 
perturbations of the identity recently has been derived by Thyagaraja and 
Haas. {14) Instead of following the general case, we will concentrate on maps 
of the form 

x '  = x + F(x,  z) 

y '  = y + G(x' ,  z) (2.2) 

z ' = z  + H(x ' ,  y ' )  



Three-Dimensional Volume-Preserving Maps 535 

which are clearly volume-preserving and, we believe, capture the main 
features of general 3D maps. They also have the advantage of being related 
to the flows defined by u =  (F, G, H) through a naive discretization 
procedure, which involves the strobing of certain time-dependent flows. We 
will further illustrate this point in the examples. Since we will choose to 
confine the dynamics of the maps to a 3-torus, the continuity of the F, G, 
and H functions in Eq. (2.2) implies that these are periodic in each of their 
variables. Thus, the simplest nontrivial form of F, G, and H can be 
obtained by retaining only the lowest order terms of their Fourier expan- 
sion. In the following we will focus on the specific class of maps T 
defined by 

x ' = x + A l  sin z +  C2 cos y 

y '  = y + B1 sin x '  + A2 cos z 

z' = z  + C l f ( y ' )  + B2 g(x')  

(mod 2z) 

(mod 2~z) 

(mod 2n) 

where the f and g functions will be either sin or cos. 

(2.3) 

2.1. Integrable Cases and Invariant Objects 

The trajectories of maps in three dimensions can belong to the 
following four categories: 

1. Fixed Points and Cycles. As is well known from lower dimensional 
maps, these are solutions of Tn(r )=  r. For  volume-preserving 3D 
maps, fixed points and cycles are generically unstable. 

2. Invariant Curves. A curve r = r ( t )  embedded in a 3D space is 
invariant under the map T if for any point on the curve 

r(t ') = T[ r ( t ) ]  (2.4) 

Invariant curves of T n that are not invariant under T i, where 
i = 1 ..... n -  1, are natural generalizations of n-cycles. We shall argue 
that invariant curves play a role in 3D analogous to cycles and 
fixed points in 2D. 

3. Invariant Surfaces. Similarly, a surface r = r(t, s) will be invariant 
if an arbitrary point on it satisfies 

r(t', s ' ) =  T[r(t ,  s)]  (2.5) 

Like the invariant curve in 2D, the invariant surface in 3D serves to 
split the space into different regions which cannot connect with one 
another. Hence, they are crucial in setting the topology of all 
invariant sets. 
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4. Chaotic Trajectories. These are basically 3D objects which are 
either bounded between invariant surfaces or fill the whole 
periodicity box. Moreover, the Liapunov number for chaotic trajec- 
tories will be positive. 

Using the map (2.3), we can now illustrate the classification of the 
variables given at the beginning of the section. If, for example, all the 
parameters are small ( e e l ) ,  we obtain a three-action map (type Tni), 
which is close to the identity. With a proper rescaling of parameters and 
time, the behavior of this case will be similar to the flow obtained in the 

~ 0 limit. 
Next, when all the parameters are small except for those in one of the 

equations of (2.3), a two-action map (type Tn) is obtained. For example, 
whenever A~, B1, C2, A2 are O(e), while C~ and B 2 a r e  of order unity, x 
and y play the role of actions, while z will be the angle. If e = 0, x and y 
label the invariant lines along the z direction on which the integrable 
motion takes place. 

In the third case, namely when all four parameters responsible for 
advancing a pair of variables (angles) are big (of order unity) and the other 
two are O(e), the T maps belong to the one-action class (type T~). 
Nevertheless, since we are mainly concerned with the nearly integrable 
maps, we will also require the coupling between the angles to be small. 
Suppose, for instance, that A1 and A2 are the only big parameters; then x 
and y are angles, while z is an action. 

Finally, whenever all parameters are big, a three-angle map (type To)  
is obtained which will generically display chaotic trajectories. 

2.2. The ABC Map. An Example 

Taking advantage of the existing knowledge on the ABC flow, we will 
employ in the following its discretized version, TAec, to illustrate the 
properties of 3D maps. TAsc can be obtained by setting A1 = A2 = A, B1 = 
B2=B,  C~ = C2= C, f = s i n  y, and g = c o s  x in Eq. (2.3). It can also be 
derived from an ABC flow which in addition is time-periodically forced 
with delta functions 

2=(Asinz+Ccosy)  ~ 6(t--n+~l) 
n = - - o o  

)) = (B sin x + A cos z) ~ 6( t -  n + ~'2) (2.6) 
n =  o o  

= ( C s i n y + B c o s x )  ~ 6( t -n+ v3) 
n ~  - - o o  
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where 0 < r~ < % < 27 3 ~ 1. From integrating (2.6) we obtain the ABC map 

x ' = x + A  sin z + Ccos  y 

y' = y + B sin x' + A cosz  

z ' = z +  Csin y ' +  Bcos  x' 

(mod 2~) 

(mod 2~) 

(mod 2n) 

(2.7) 

Notice that TABc is a representative of the one-action maps whenever two 
of the parameters are small. Moreover, if those parameters vanish, TAB c 
becomes integrable. For example, let us consider TA =-- TABC (B = C = O) 

x ' = x + A  s in z=x+2r~p l  (mod 2~) (2.8a) 

y'  = y + A cos z = y + 2rcp2 (mod 2~z) (2.8b) 

The motion for TA is restricted to planes where the action variable z is 
constant. The value of the action variable determines the nature of this 
planar motion via the number-theoretic properties of the rotation numbers 
pl and P2. The one-action resonance condition of Eq. (1.5) can be 
expressed in terms of Pl and P2 as 

mpl + np2 = k 

then distinguish three cases: One can 

1. 

(2.9) 

If one cannot find any integers m, n, and k satisfying Eq. (2.9), the 
trajectories of TA densely fill entire z = Zo planes. The nonresonant 
invariant planes will be shown to persist under small perturbations 
changing into invariant surfaces (see Section 2.1). 

2. On planes Z=Zo where the resonance condition is satisfied, 
individual trajectories will only fill lines instead of the whole plane. 
In terms of the x, y variables the slope of this lines is m/n, where m 
and n are the integers that solve Eq. (2.9). For  the integrable map 
irA, each initial condition on a given resonant plane belongs to 
one of those lines. When nonlinearly perturbed, the resonant 
planes disintegrate. Most of its invariant lines disappear, except for 
a finite set. Numerically, we will find that half of the remaining 
lines are stable and half unstable. This is a scenario analogous to 
the one described by the Poincar6-Birkoff theorem in two-dimen- 
sional maps. 

3. Whenever both p l = p l / q l  and pz=pz/q2 a r e  rational, the trajec- 
tory is a cycle of period equal to the least common multiple of ql 
and q2. 
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The first two types of trajectories will be analyzed in the next section. 
While for each value of A in TA the invariant lines and planes are dense in 
the periodicity box, the cycles are extremely rare. In order to find a specific 
cycle, Pi = P]q~, where i = 1, 2, A has to satisfy 

A 2 = 4g2(p~/q~ + paz/q~ ) (2.t0) 

Equation (2.10) specifies in general a set S of measure zero such that if 
Aie  S, one of these cycles can be found somewhere in the periodicity box. 
In principle, degeneracies such that two or more cycles will show up at the 
same value of A are possible. However, these are hard to predict, since that 
would be equivalent to solving an extension of the Euler problem over the 
rationals. 

Before we pursue any further our analysis of cycles, it should be 
stressed that volume-preserving 3D maps have in general only linearly 
unstable ones. Volume preservation implies that each of the three eigen- 
values of the Jacobian vl, v2, 3)3 satisfies 

v 3 + av z + by - 1 = 0 (2.11 ) 

where v l v 2 v 3 =  1. Since the coefficients a and b are real, the solutions to 
Eq. (2.11) can be either all real or one real and the other two complex con- 
jugates. Therefore, generically the moduli of the eigenvalues is different 
from one. 

The fixed points of T A are at A = 2~I, where l =  0, 1,.... For Pl = P2 = 

P3 = 0 we can easily find the fixed points of TAB c as well. These satisfy 

- A  sin z =  Ccos  y =  -}-[l(C2+AZ-B2)]1/2 
- B  sin x = A cos z = +_[�89 2 + B 2 - C2)] 1/2 (2.12) 

- C sin y = B cos x = + [�89 2 + C 2 - A2)] 1/2 

There are eight of them and they exist only as long as the square roots in 
(2.12) are real. Therefore, solutions to (2.12) exist only outside the three 
right-angled cones centered on the axes of the (A, B, C) parameter  space 
(see Fig. I). On the surface of the cones, paffs of fixed points coalesce and 
disappear through a bifurcation mechanism similar to the saddle-node 
collision. The way in which the fixed points pair up depends on the cone on 
which they collide. For  example, if this happens on the cone around the A 
axis, then Eqs. (2.12) become 

- ( C 2  + B 2 ) l / 2 s i n z = C c o s  y =  + C  

- B  sin x = (C 2 + B2) 1/2 cos z = ___B (2.13) 

- - C s i n  y = B c o s  x = 0  
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t3 
Fig. 1. The fixed points of type pl=p2-p3=O of TABc can only exist in the region of 

parameters lying outside the three right-angled cones. 

Therefore, the fixed points that differ only in the sign of the third equation 
in (2.12) will collide when A 2= C2+ B 2. 

Notice that the existence region of the trivial fixed point (Pi = 0) in the 
parameter space (A, B, C) has a conical shape with its tip touching the 
origin of the A axis. We believe that the existence regions of higher order 
cycles have similar configurations. This is a three-dimensional analog of the 
Arnold tongues in circle maps (15) typically exemplified by 

K , 

TK~(O) = 0 + ~ sin 2~0 + g? 

In TABC, the parameter A plays the role of the external frequency Q. In the 
integrable limit of both cases a specific cycle exists only for a given value of 
the frequency parameter. When the nonlinearity is increased, the cycles 
exist in a finite interval of frequency values. Since in TAB C there are two 
nonlinearity parameters rather than one, the generalized Arnold tongues 
are three-dimensional objects. Moreover, these are only existence tongues, 
while in T ,~  they indicate the stability of cycles as well. Numerical 
investigations of the tongue structure for TAec are in progress and will be 
reported in a future publication. 

2.3. Symmetr ies and Reversibil i ty 

A knowledge of the symmetries present in the mapping equations is 
useful for the understanding of many aspects of the dynamics. The sym- 

8 2 2 / 5 0 / 3 - 4 - 5  



540 Feingold, Kadanoff, and Piro 

metries are reflected, for instance, in the location of invariant objects in the 
phase space as well as in their properties. In particular, reversibility is a 
symmetry that has been proven to be crucial in allowing the extension of 
some results of the Hamiltonian theory to more general dynamical systems 
in even dimensions. (16/In general, a map T is called reversible with respect 
to an involutive transformation S (i.e., a transformation such that 
$2=  identity) if T - l =  So To S - 1 =  So To S. As before, we will employ the 
ABC map to illustrate the nature of the symmetries. In the next subsection 
we will describe some remarkable implications of these symmetries for the 
stability of the trajectories. 

In TAsc, as opposed to the ABC flow, there are two different variables 
for each space direction: the variable before the propagation and the 
variable after (the primed variables). As a consequence, most symmetries of 
the ABC flow break down following the discretization. However, both the 
flow and the map are invariant under r i ~  r i+  r~ and Q i ~  -Q~,  where 
i =  1, 2, 3, r = ( x ,  y,z) ,  and Q =  (B, C, A). This enables us to limit our 
investigations to the positive octant, for which A >0 ,  B > 0 ,  C > 0 .  
Moreover, when A = B, TAAC =- TABC (A = B) is invariant under Sp as well, 

Sp: ( t , x , y , z ) - - . ( - t , - z + ~ / 2 , - y + ~ / 2 , - x + g / 2 )  (2.14) 

Sp is an involution S2p=I and therefore TAA C is reversible. (16) The 
invariance under Sp implies 

Spo TAAc o Sp '  = TyJ c (2.15) 

where o denotes functional composition. In a more pictorial way, Eq. (2.15) 
reads 

Po sp ~ PI 

P'o ~ P', 

(2.16) 

In Appendix A we prove an important property of reversible 3D maps. 
Namely, that whenever the Jacobian matrix of the involution c~S is not 
dependent on the coordinates (as in Sp) the eigenvalues of the linearized 
map 0T at the two points P0 and P'I = SP ~ TAAc(Po) are inverses of each 
other. Moreover, if Po is a fixed point (P0 = P;),  then also P1 = P] and 
therefore the same result is obtained without the requirement that r is 
constant. In other words, in an arbitrary reversible map, each fixed point 
has a companion with inverse eigenvalues. When A r B r  C we are not 
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able to find explicitly an involution Se as before and perturbative 
calculations suggest that it has a complicated form. However, an indication 
of its existence can be found in the fact that the fixed points are coupled in 
pairs with inverse eigenvalues, as is also shown in Appendix A. One 
striking implication of these results will be discussed in the next subsection. 

2.3. In Reversible Maps the Second 
Liapunov Exponent Is Zero 

We have anticipated that for large values of A, B, and C the map TAB c 
displays only chaotic motion. A useful characterization for this kind of 
motion is given by the Liapunov exponents. In three dimensions, there are 
in general three independent exponents 21 >/22 >~ 23, ~17) 

21 =~1; ~2=~2--21; 23=~3--22--21 (2.17a) 

#~ = lim -1 log ]OT"(xo) el • --- • OT"(xo) e~l (2.17b) 
,-~ oo n ]e 1 • . . .  • ei] 

for almost all choices of the three linearly independent vectors ej. In our 
example, however, the volume-preserving property implies '~1 + 22 + 23 = 0. 
Consequently, there are only two relevant exponents. Roughly speaking, 2~ 
can be considered as the averaged logarithm of the Jacobian matrix eigen- 
values over one trajectory of the map T. The numerical determination of 
the Liapunov exponents for the ABC map surprisingly shows that 22 
vanishes for every examined combination of the parameters in the chaotic 
region. One possible explanation for this fact is based on the reversibility 
property. We have seen that if the involution is linear, this property implies 
that every point in the space will have a corresponding companion with 
inverse eigenvalues. For  a trajectory that visits both points with equal 
probability, the contribution of each one to 22 will cancel the contribution 
of the other. Notice that for this type of trajectory the argument can be 
extended to the case where the involution is nonlinear if we assume that the 
fixed points and cycles are distributed with the same measure as the parts 
of the chaotic trajectory. 

3. I N V A R I A N T  S T R U C T U R E S  A N D  D I F F U S I O N  IN 3D M A P S  

This section is devoted to one of the main questions regarding 3D 
maps: whether Arnold diffusion is present in the various nearly integrable 
cases. The actual existence of diffusion depends on the behavior of the 
invariant structures under nonlinear perturbations. In the 2D standard 
map, for example, this diffusion is forbidden because the invariant lines 
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that foliate the phase space in the integrable case survive to some extent 
when the nonlinearity is present. Any pair of those lines block the escape of 
the chaotic trajectories lying between them. A similar behavior should 
occur in the 3D case, provided that the appropriate invariant surfaces 
persist at finite nonlinearities. 

We can further pursue the analogy between the 2D and 3D maps for 
the case with only one action. In the former, invariant lines with rational 
rotation numbers (resonant lines) break under perturbation into an even 
number of fixed points through a Poincar6-Birkoff mechanism. Half of the 
fixed points are elliptic and half are hyperbolic. Similarly, in the 3D case 
resonant invariant planes break into an even number of stable and unstable 
invariant curves. The elliptical islands enclosing the stable fixed points in 
the perturbed 2D map correspond to the elliptical invariant tubes 
surrounding stable lines of the 3D case. Around unstable fixed points 
(invariant curves) and their corresponding separatrices, strips (layers) of 
chaotic motion emerge. The chaotic regions are separated from each other 
and diffusion from one to another will be possible only after the last 
separating invariant curve (surface) breaks down. Earlier work on the stan- 
dard map used sequences of fixed and cyclic points approximating the 
invariant curves to investigate the nature of the onset of diffusion. For 3D 
maps, we expect that an analogous role will be played by sequences of 
invariant or cyclic curves remaining after the destruction of resonant 
planes. 

For two actions the situation is different. In three dimensions the maps 
have invariant lines as integrable structure, but these do not divide the 
space into disconnected parts. We therefore could imagine that even very 
small nonlinearities might generate a tenuous web of interconnected 
chaotic regions, allowing diffusion through all the space. Moreover, it is 
not clear a priori  whether a theorem analogous to the KAM one might 
also hold for this type of integrable structure. To gain insight into this 
point, let us pursue the comparison with 2D maps. A "two-action" 2D map 
is a perturbation of the identity. The identity itself is the "integrable" map 
under which every point in the space is mapped onto itself. At zero pertur- 
bation each point is an invariant. But for small perturbations the map 
behaves exactly like a flow and all the invariant points will slowly drift 
along the trajectories of that flow. Thus, the invariant structures are not 
really points, but a family of curves. Since any two-dimensional flow is 
integrable, the disappearance of the fixed points does not imply any chaotic 
properties of the map. Similarly, for 3D two-action maps, the first effect of 
the perturbation is to break down the invariant lines and replace these by a 
set of surfaces. In other words, the slow drifting of action variables 
(invariant lines) combines with the fast perpendicular angular motion to 
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generate invariant surfaces. However, the fact that, according to Eq. (1.6), 
the fast motion becomes resonant on surfaces that are independent of the 
invariant ones has important implications in the 3D case. Namely, one 
then has two possibilities. For  some maps and in some regions of the space, 
the invariant surfaces do not intersect the resonance sheets and therefore 
are true invariants, which really do divide the space. On the other hand, 
when such intersections do occur, resonances can locally "destroy" or 
rather interconnect all the surfaces in a given region. These connections 
allow for a random motion, which in principle can cover the whole space 
and is analogous to Arnold diffusion. 

3.1. K A M - l i k e  Behavior of One-Act ion  Maps: 
Numerical  Evidence 

In order to visualize trajectories of 3D maps, the so-called slice 
method is used. We select a thin planar slice from the (x, y, z) space and 
record only these iterations that lie in it. For the 2D presentation we 
project those points on a 2D plane parallel to the section. Therefore, even 
sections of regular trajectories lying on a 2D invariant surface could appear 
in the slice as fuzzy curves under sufficient magnification. However, the 
fuzziness is bound to decrease as we make the slice width smaller. 
Throughout  this paper a slice width of 2~/100 is used. Notice that each 
section contains only partial information about the phase portrait and 
therefore a set of slices is needed to visualize the actual nature of the 
trajectories. 

We will continue the study of the one-action maps employing the TABc 
example. To start with, we plot in Fig. 2 two perpendicular slices of the tra- 
jectories of TAB c close to the integrable case. Specifically, we set A = 1.5, 
B =  0.08, C--0.16 and iterate 5 .10  4 times each of the 20 initial conditions 
equally spaced along the axis of the action variable z. The picture is 
reminiscent of the phase portrait for the 2D standard map. For  simplicity, 
let us confine our discussion to the (x, z) slice. First note the sections of the 
perturbed invariant surfaces, which appear as a family of slightly deformed 
lines. The integrable invariant planes neighboring z = 0 and z = ~ suffer a 
rather drastic change under perturbation. Around x =  ~/2, z = 0  and 
x = 3~/2, z = n we can see elliptical curves forming a structure similar to 
that around stable fixed points in 2D area-preserving maps. In the present 
case, however, those closed curves are sections of a family of "coaxial" 
invariant tubes that surround an invariant line. In the next subsection we 
show, using perturbation expansions, that these lines are the remnants of 
planes that satisfy the resonance condition. According to (2.9), we can 
classify these resonant lines by the triplet of integers (m, n, k). For  the z 
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Fig. 2. T w o  perpendicular slices of  20 trajectories for TABc at A = 1.5, B = 0.08, and C = 0.16. 
The slices are in the (0, 0.01) interval of  the perpendicular coordinate.  Initial condit ions  are 
equally spaced a long  the z axis. Not ice  that this set of  initial condit ions  generates three coaxial  
tubes around the (1, 0, 0) surviving invariant  line. 
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values given before, Pl = 0 and P2 = ++_A/2rt, and therefore the tubes corre- 
spond to the (0, _+ 1, 0) resonant lines of the integrable map TA. The curves 
between z/2n ~ 0.19 and z/2rc ~ 0.31 are not sections of invariant planes as 
one might think, but longitudinal sections of a tube parallel to the x axis, 
as is confirmed by Fig. 2b. This tube corresponds to the (1, 0, 0) resonance. 
A schematic 3D picture of all lowest order tubes is given in Fig. 3. Tubes 
emerging from higher order resonances are observed, for example, at 
z/2rc ,,~ 0.371 This tube, which is more evident in Fig. 4, is a consequence of 
the (1, 1, 0) resonance. This resonance corresponds to the case where the 
rotation numbers of the integrable trajectory satisfy pl + P2 = A cos Zo + 
A sin Zo = 0. 

In addition to the stable invariant lines, there are an equal number of 
unstable hyperbolic lines remaining from the destroyed resonant planes. 
The lowest order ones are located at x = 3z/2, z = 0; x = ~/2, z = z; y = 7t, 
z = ~/2; and y = 0, z = 3792. Even though they are not apparent in Fig. 2, 
their existence is manifested in the form of chaotic trajectories. These 
trajectories fill layers that surround the tubes and are bounded by the 
deformed invariant planes. As the small parameters are increased, the 
chaotic regions grow in size at the expense of invariant surfaces. Figure 4 is 
analogous to Fig. 2, but for A =  1.5, B=0 .1 ,  and C=0.2 .  Regular and 
chaotic trajectories still coexist, but the latter are dominant. 

In Fig. 2 we clearly see the invariant surfaces separating all chaotic 
regions from each other. It is shown in Appendix B that the existence of 
those surfaces prevents diffusion from one chaotic region to another. Some 

Z 

X 
Y 

Fig. 3. A three-dimensional schematic representation of the four A < 2rt tubes of TAB c. 
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T w o  slices of  20 t ra jec to r ies  of  TABC as in Fig.  2, on ly  here  A = 1.5, B = 0 . 1 ,  a n d  

C = 0 . 2 .  
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of the surfaces are also present in the case depicted in Fig. 4. They would 
be in the blank areas around z/2rc ~ 0.08 and z/2rc ~ 0.85, but our grid of 
initial conditions is not dense enough to resolve them. One perturbed 
invariant plane is displayed Fig. 5 by simply projecting the trajectory down 
on one plane instead of using the slice method. The fact that these pertur- 
bed invariant planes really block diffusion for finite values of B and C can 
also be numerically checked. For  C = 2B we measure the time tE(B ) it takes 
a chaotic trajectory starting from the z = 0 plane to reach the one at z = 2zc. 
Starting from high values of B for A = 1.5, t E is found to diverge at finite B. 
A good fit to Te is found in the form 

t0 
rE(B) = (3.1) 

( - e / ~ o  + 1)~ 

and gives to~3 ,  Bo~0.117, and c~2 .2 .  This indicates the absence of 
Arnold diffusion for TAB C. Moreover, in the following subsection, we show 
that the perturbation expansions for 3D one-action maps lead to the same 
small-denominator problems as in, for example, the two-dimensional 
standard maps. Apparently a kind of KAM mechanism also holds in 3D 
maps with only one action. 

3.2. Perturbat ion Expansions for One-Act ion  Maps 

As before, we use the A B C  map as a representative of one-action 
maps. 

3.2.1.  Invariant Surfaces .  We have shown in Section2.2 that 
when B = C = 0, the space is foliated by the planes z = Zo = const, which are 
invariant under TA. Since we are interested in the persistence of this 
invariant structure for small but finite values of B and C, we will implement 
a perturbative scheme to obtain the invariant surfaces corresponding to 
each plane. Let us take B=c~ee and C = e  with e small. We therefore 
assume that the surfaces can be represented by the equation 

Z = Z o +  ~ enHn(x, y) (3.2) 
n = l  

The second ingredient of the scheme is the requirement given by Eq. (2.5) 
that a point on an invariant surface has to remain on it under the iteration 
of the map. Substituting (3.2) into (2.5) with the obvious identification 
(t, s)---, (x, y), we obtain in general an infinite set of linear functional 
equations for the H,,. These equations can in principle be solved order by 
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Fig. 5. Three  pe rpend icu la r  pro jec t ions  of an inva r i an t  p lane  for TABc at  A = 1.5, B = 0 . 1 ,  
and  C = 0.2. 
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Fig. 5 (continued) 

order. Let us restrict ourselves to first-order calculations for the invariant 
surfaces. Equations (2.3), (2.5), and (3.2) lead us to 

x ' = x + A  s i n z o + e  cos y 

y'  = y + A cos Zo +eaB sin x'  

z' = z o + ~Hl(x',  y ' )  + O(e 2) (3.3) 

= z o + eHl(X + A sin Zo, y + A cos Zo) + O(e 2) 

= Zo + eHl(x,  y) + e sin(y + A cos Zo) +eaB COS(X + A sin Zo) + O(&) 

Hi(x ,  y) therefore satisfies the linear functional equation 

Hl(X + A sin Zo, y + A cos Zo) 

= Hi(x ,  y) + sin(y + A cos %) + a B cos(x + A sin Zo) (3.4) 

which can be easily solved by expanding Hi(x ,  y)  in a double Fourier 
series. Since HA has to be periodic, we have in general 

Hi(x ,  y ) =  ~ amn ei(mx +ny) (3.5) 
m , n =  - - ~  
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F r o m  (3.4) and (3.5) we obta in  the equat ion  for amn , 

amn{exp[ i (rnA sin z o + nA cos Zo)] - 1 } 

= �89 1,n exp ( - - iA  cos Zo) -- 61,n exp(iA cos Zo)] 5O,m 

+ %B[61,m exp(iA sin Zo) + 5_ ~,m exp ( - -  iA sin Zo) ] 6o,n (3.6) 

A solut ion can be obta ined  with the only nonzero  terms being ao,+l and 
a + 1,o. The resonance condi t ion 

m A  sin z o + nA cos Zo = 2~k (3.7) 

gives no t rouble  at this order  as long as (m, n, k) is not  equal  to ( _+ 1, 0, k) 
or  (0, 4-1, k). Thus,  TAB C displays what  we call a separa t ion  of orders: 
Hr(x ,  y )  contains  only the Four ier  coefficients amn for which Iml + Inl = r. 
Therefore,  each order-in-e correct ion to the invar iant  surface generates only 
amn of given order,  leaving unchanged  the Four ier  coefficients of  different r. 
The a0,_+l and a+l,o expressions in Eq. (3.6) are correct  to all orders in e. 

3 .2 .2 .  T u b e s .  The condi t ion (3.7) has a special set of consequences 
when it holds for (m, n, k) = ( _+ 1, 0, k) and (m, n, k) = (0, -t- 1, k). In this 
cases the values of a0,+~ and a_+l,O, respectively, diverge, the expansion 
breaks  down,  and,  in fact, the invar iant  surface disappears.  Fo r  those 
values of (m, n, k), Eq. (3.7) is equivalent  to 

A sin zo = 27zkl ; A cos z 0 = 2~zk 2 (3.8) 

When  A < 2~ there are resonances only for kl  = k2 = 0. These are located at 
z 0 = 0, 7~ and Zo = ~/2, 3~/2 and cor respond  to the (0, + 1, 0) and ( + 1, 0, 0) 
resonant  lines of  TA (see Sect ion2.2) ,  respectively. Around  these 
resonances,  invar iant  planes break  down and form tubular  structures,  as 
described in Section 3.1. The  tubes arising f rom the singulari ty in a+  1,o are 
parallel to the y direction, while the ao,+l ones are in the x direction. 

When  A = 2rr, eight new tubes are g~,nerated in addi t ion to the A < 2~ 
four. These are kl  = k 2  = 1 solutions to Eq. (3.8) and  are located at the 
middle points  (in z) between the kl  = k2 = 0 tubes. At each middle point  
there are two new y tubes (x tubes):  one at x = 7r/2 (y  = ~/2) and the other  
at x = 31r/2 (y  = 3~/2). Each emerging tube migrates  away  f rom its creat ion 
posi t ion as A grows, one toward  lower z and  the other  to higher z. Every 
t ime A passes th rough  a mult iple  of  2~ (say A = 2~rl, with l being an 
integer), a new generat ion of eight tubes appears ,  as in the l = 1 case. If  we 
consider only the tubes parallel to the y direction, we now have 4l of the 
type that  change posi t ion with A and two fixed ones. The  migrat ing tubes 
accumula te  as l-- .  oo at bo th  sides of the two fixed ones. This 
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accumulation-like picture is further emphasized by the fact that the 
migrating tubes are around the same x value as the fixed tube they are 
moving toward. 

Let us concentrate for a while on the appearance of the l =  1 tubes. It 
turns out that the structure described in the previous paragraph is further 
enriched by the interaction among x and y tubes. Since at the z value 
where the new x tubes are generated the original y tubes are also located, 
this interaction is especially strong at A = 2~z. The new x tubes and the old 
y tubes have a spatial oscillation modulated such as to avoid each other. 
But this avoidance is not always strong enough. The tubes degenerate into 
chaotic motion whenever they come too close to one another. To illustrate 
this phenomenon, we look at a case in which B and C are quite small, 
B=0.01 and C=0.02.  In Fig. 6, A--6.3,  so we are just above the point 
where the first set of migrating tubes should have appeared. One can see 
that at this A value all fixed tubes become chaotic due to collisions with the 
emerging new ones. However, as A is further increased and the new tubes 
migrate away, all tubes reappear and the amount of chaotic motion in their 
region dwindles (see Fig. 7). The relative amount of chaotic motion in the 
tube region is maximal at A = 2~ and decays as A is either increased or 
decreased from this critical value. 

0.8 

0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  _- 
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Fig. 6. The (x, z) slice for TAB c. Parameters are A = 6.3, B = 0.01, and C :  0.02. Collisions of 
old and new tubes generate layers of chaotic motion where the tubes should be. 
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Fig.  7. S a m e  as  in Fig,  6, o n l y  he re  A = 7. B o t h  n e w  a n d  o ld  t u b e s  h a v e  r e a p p e a r e d  in  t he  

p o s i t i o n s  p r e d i c t e d  by  Eq.  (3,8).  

Far from the singularities of the Fourier coefficients in Eq. (3.5), the 
constant z invariant planes of the integrable case evolve into slightly 
undulated ones (see Fig. 5). Up to first order in e, the expression for the 
perturbed invariant planes is derived from Eqs. (3.2), (3.5), and (3.6). We 
obtain 

e sin y -  sin(y + A cos z0) ~c~ cos x -  cos(x + A sin Zo) 
Z = Z o  -t t- (3.9) 

2 1 - cos(A cos Zo) 2 1 - cos(A sin z0) 

Equation (3.9) can be used to evaluate the location of the tube separatrices 
and therefore the size of the resonant regions. This will allow us to estimate 
the parameter values for which chaos sets in via the Chirikov resonance 
overlap criterion. A calculation in this spirit is presented in Appendix C. 
We obtain that, for A < 2~, whenever 

2 

motion becomes chaotic through the overlap of the (0, 1, 0) and the 
(0, - 1 ,  0) resonances. For  example, at A = 1.5, Eq. (3.9) gives B ~ 0 . 2  for 
the onset of chaos. Thus, the resonance criterion overestimates by a factor 
of about two the value B~0.117 for the onset which was obtained 
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numerically in Eq. (3,1). This situation is reminiscent of the one observed 
in the standard map (see Ref. 9, p. 227). 

3.2.3.  Invariant Lines. The preceding discussion concerning the 
tubular structures arising from the resonant planes was mainly qualitative. 
Building a more precise description of these structures is a difficult task. In 
2D maps the analysis of the corresponding objects proceeds easily by 
linearizing the map around the elliptic fixed points which appear according 
to the Poincar6-Birkoff mechanism. Those points are solutions of algebraic 
equations and their stability is a 2 x 2 eigenvalue problem. For  3D maps 
instead the invariant lines remaining from the destroyed resonant planes 
are solutions of a nonlinear functional equation and their stability analysis 
leads to an infinite eigenvalue problem. Even the numerical determination 
of those lines is a hard problem. In the following we will employ pertur- 
bation theory to give an approximate expression for those lines in the one- 
action case. Let us consider the first-order resonant planes (0, + 1, 0) at 
z = 0, rr. We have shown in Section 2.2 that at e = 0 the iterations of TAlc 
lie on lines parallel to the y axis. Each initial condition Xo corresponds to a 
different line, which is then defined by x = Xo and z = z i, where z 1 = 0 and 
z 2 = ~. We want to understand what happens to these lines when e r  
Therefore, we look for perturbed lines of the form 

X=Xo+eX(y)-+-O(~2); z = z i + ~ Z ( y ) + O ( e  2) (3.11) 

and confine our calculations to order e. Using the invariance condition 
(2.4), we now obtain two functional equations, one for X(y )  and another 
for Z(y), 

Y [ y  + A cos zi] = X(y)  + A Z ( y )  cos zi + cos y (3.12a) 

Z [ y + A  cos zg] = Z ( y ) + s i n ( y + A  cos z~) + e sco s  x o (3.12b) 

Using the periodicity of the boundary conditions, we expand both X(y)  
and Z ( y )  in Fourier series 

X ( y ) =  ~ ~ ~"~' ~_, ane , Z(y)  z iny = a,e (3.13) 
n ~  - - o o  t t ~  o o  

The Fourier coefficients satisfy 

a~[exp(inA cos z~) - 1 ] 

Z 1 = A ( c o s ~ ) a , + ~ (  1 , ,+6 1,,) (3.14a) 

a~[exp(inA cos z~) - 1] 

= �89 _ 1,, exp( - iA cos zi) -- 61,, exp(iA cos zi)] + 6o,, o~, cos x o 
(3.14b) 
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Now we can show how the perturbation expansion allows one to visualize 
the Poincar6-Birkoff-like mechanism by which resonant planes break into 
a finite set of invariant lines. Equation (3.14b) displays a spectacular type 
of singularity, which results from the nonvanishing term of Fourier order 
zero. For n = 0  the factor [exp(inA cos z i ) - 1 ]  vanishes and therefore 
Eq. (3.14b) cannot be satisfied unless cos Xo = 0. Only four (0, _+ 1, 0) lines 
of T A satisfy this condition; the (Xo, zi) pairs that define these are (n/2, ~), 
(37r/2, 0), (n/2, 0), (3n/2, n). In other words, out of the infinite set of lines of 
the integrable case, only four survived the presence of the nonlinear pertur- 
bation. This is analogous to the way in which resonant invariant curves of 
2D maps break under nonlinear perturbation into pairs of fixed points. The 
(n/2, 0), (3n/2, 7t) surviving invariant lines are axes of the two families of 
elliptical tubes observed in Figs. 2a and 4a. This indicates that they are 
stable. Each of the other two, instead, is located at the core of a 
corresponding hyperbolically shaped chaotic layer, which suggests that 
they are unstable. 

Since the coefficients of a~ and a z in Eqs. (3.14a) and (3.14b) vanish 
at A = 2nl, even the two stable surviving lines are bound to break close 
to the critical A values. This provides an alternative explanation for the 
enhancement of chaos at A = 2n in the tube region. 
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Fig. 8. Comparison of z ( y ) = z 2 + ~ Z ( y ) ,  where Z ( y )  is given by Eq. (3.15b) (dashed line), 
with the (y, z) projection of the central line in the (x = 3n/2, z = n/2) y-tube. Parameters of 
TAec are the same as in Fig. 5. 
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If nonsingular,  the solutions to Eq. (3.13) can be obtained after some 
algebra. For  the lines with z = z2 = rr 

X(y) = 
A sin(y + A ) - 2  sin y + s i n ( y - A )  

2 3 - 4 cos A + 2 cos 2A 

z ( y )  = 

cos(y  + A) - cos y 
+ (3.15a) 

2(1 - cos A ) 

sin y - s in(y - A) (3.15b) 
2(1 - cos A) 

The same expression with A ~ - A  give the solutions for the z = z l  = 0 
invariant lines. In Fig. 8 we compare  the perturbative invariant  line given 
by Eqs. (3.11) and (3.15b) with the numerically obtained one at the center 
of the y tube at (x = 3zr/2, z = ~). The disagreement between the two is 
consistent with our  expected error, which is of order  e 2. 

3.3. Perturbat ion Theory for T w o - A c t i o n  Maps: Dif fusion 

In this section we study the class of maps TII defined by setting A ~ = e, 
A2=O~A2e , B 1 =c~me , and C2=o~c2e with e ~  1 in Eq. (2.3) and leaving the 
remaining parameters  and the functions of  order  unity, 

x '  = x + ec~A1 sin z + ~C~c2 cos y 

y '  = y + ec~B1 sin x '  + e0~A2 COS Z (3.16) 

Z' = Z + Cl f (y ' )  + B2 g(x') 

Under  these condit ions x and y (actions) are nearly conserved under 
iteration, while z (angle) varies rapidly. When  e = 0 the conservat ion of the 
actions is exact and all the trajectories lie on lines defined by x = Xo, 
Y = Yo. Notice that  these lines fill the whole space, while in the previously 
studied one-act ion case, the invariant  lines are of zero measure. In order to 
investigate the behavior  at e # 0 we will use the same procedure as in (3.2). 
Since the lines are parallel to the z axis, we suppose that  the per turbed ones 
are given by 

X=Xo-~-eX(z)-~-O(e2); y=  yo+eY(z)+O(e 2) (3.17) 

Disregarding O(e 2) terms, we obtain the two functional equat ions for X(z) 
and Y(z): 

X[z + Clf(yo)  + 92 g(xo)]  = X(z) + ~A1 sin z + c~c2 COS Yo (3.18a) 

Y[z + Clf(yo)  + B2 g(xo)]  = Y(z) + ~81 sin x 0 + C~A2 COS Z (3.18b) 

822/50/3-4-6 



556 Feingold, Kadanoff, and Piro 

Solving as usual by Fourier  expansion, we find 

a~(exp{in[Clf(yo) + B2 g(xo)]  } -- 1) 

=c~A1(6 , , 1 -6 ,  1 ) + ~ c 2 6 ,  o c o s y o  
2i ' ' 

(3.19a) 

a~(exp{in[C,f(yo) + B2 g(xo)]  } - l )  

= ~ A 2  (6n, 1 + 3 .  _ 1 ) + 0 ~ B 1  6rl 0 s in  Xo 
2 ' " 

(3.19b) 

Note  that a~ and a~ are both  divergent unless the condit ion 

sin Xo = cos Yo = 0 (3.20) 

is satisfied. According to Eq. (3.20), only the lines defined by the (x0, Yo) 
pairs (0, ~/2), (~z, 3z~/2), (0, 3~/2), and (~z, 3~/2) will survive perturbat ion.  
The general b reakdown of the invariant  lines at order  e might lead one to 
expect that  the whole invariant  structure should disappear at arbitrarily 
small values of e in favor of a completely diffusive motion.  However,  the 
invariant surfaces shown in Fig. 9 deny this expectation. There,  the (x, y) 
slice of the trajectories of the map TI~ a obtained from Eq. (2.3) by setting 
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. " . I . I.-- - ' - i . \  : , I- . i 

.++ , . . . ,  ~ - - - ~  \ ",.. ,.. ~../-.,.-,-- 
0 .8 k;:" , ,, / ,<:<:~:'c,,-.~,, "\ ,. ., ",,,, 

F i : t " 

0.6 - - : ;  ; .  "-.. .... " ........ j -  . .  . . - "  

0 4 i - ;L" - .  " ; {  7:: . . . . . .  17- .....";;;-. 

,7') J ~ '  ,' t ' (+:,,. 

/ .  - , , ,  . . . . . .  

.... z . ,  i " ...... : : : ; i , " - . "  .......... 
0 ....... , . .  , i i ' : : "  ' ........ 

0 0.2  0.4 0 .6  0.8 1.0 

x/2. n- 

.,~--- cho o'lic 
region 

invariant 
surface 

tube 

Fig.  9. T h e  (x,  y )  slice o f  TI] a w i t h  A I = 0.001,  Bl  = 0 .0015,  C2 = 0.002,  A 2 = 0.0025,  C 1 = 2.5, 

a n d  82  = 4. 
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f ( y ) = s i n  y and g(x)=cosx is shown. A surprising new structure is 
displayed. Two of the four nonsingular lines are surrounded by a family of 
invariant tubes. Moreover, undulated invariant surfaces topologically 
equivalent to planes also appear. The separatrices between those surfaces 
and the tubes intersect at the other two "hyperbolic" lines. We conclude 
that under perturbations invariant lines coalesce, forming invariant sur- 
faces. In other words, the integrable case consisting of a two-parameter 
family of invariant lines is actually a degenerate limit of another integrable 
case composed of a one-parameter family of invariant surfaces. We will 
show, however, that some of those surfaces break at order e because of 
singularities due to the 6_+~,, terms occurring when the n = 1 resonance 
condition in 

n[ C~f( yo) + B2 g(xo)] = 2zk (3.21) 

is satisfied. The projection of the (n, k )=  (1, 0) resonance sheet given by 
Eq. (3.21) is shown in Fig. 10 for the same THa map. It coincides with the 
thin chaotic region between the invariant planes. The chaotic rings arising 
around the invariant lines correspond to the (n, k)=(1,  +1) resonances 
not shown in Fig. 10. 
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x/2  
Fig. 10. Solut ions  of Eq. (3.21) with (n, k)  = (1, 0). T h e  C1 and  B2 are the s ame  as in Fig. 9 
and  therefore these are the lines on which  the invar ian t  curves W~ [see Eq. (3.23)] are 
resonant .  
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Let us show the origin of the above-mentioned invariant surfaces and 
the way they break if (3.21) is satisfied. First of all, when e is extremely 
small (but nonzero) in T i t ,  z is a fast-moving variable, while x and y are 
very slow. Therefore, in the adiabatic limit we can separate the fast time 
scale by averaging over z and suppose that the (x, y) map is sensitive only 
to the averaged z terms. Assuming that z is uniformly distributed along 
[0, 2z] ,  the terms in TH containing z average to zero. As a result, the slow 
map is 

x '  - x = A x / A n  = •(Zc2 cos y (3.22a) 

y '  - y = A y / A n  = e ~ l  sin x (3.22b) 

which closely resembles a flow. If we set t = e A n  and take the limit e ~ 0, 
the map of Eqs. (3.22a), (3.22b) actually becomes a flow. The trajectories of 
the resulting flow lie on curves W#, which satisfy 

B 1 cos x + C2 sin y = fl = const (3.23) 

Since there is an additional fast z motion whose frequency is typically 
incommensurate with that of the (x, y) motion, Eq. (3.23) describes the 
e--. 0 invariant surfaces, which are the true integrable objects of T . .  
Several W# curves are shown in Fig. 11. Note the coincidence of these 

1.0 ~ ..... .-2<.." 

0.8 ( ( ( ( ( ~ / / / ) 

0 . 6 2  ~: " 
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0 0.2 0.4 0.6 0.8 1.0 
X/Z~T 

Fig. 11. The IV# curves of Eq.(3.23) with the same values for B l and C2 as in Fig. 9. 
Moreover, the different curves have the same initial conditions as the trajectories shown in 
Fig. 9. 
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contours with the surfaces of Fig. 9. Notice also that the W e curves do not 
depend on the choice of the f and g functions in Tn. 

A meaningful perturbation theory can only be written for the surfaces 
of Eq. (3.23), but not for the invariant lines of the e = 0 case. Let us pursue 
this line of thought. Up to order e, the invariance condition for the 
perturbed W e surfaces is 

B1 cos x' + C2 sin y' + eH(x', y', z') 

= B 1 cos x + C2 sin y + ell(x, y, z) (3.24) 

From Eqs. (3.16) and (3.24) we can derive a functional equation for 
H(x, y, z), 

H[x, y, z + Cl f ( y )  + B2 g(x)]  - H(x, y, z) 

= ~AlC~l sin x sin z -- O~AZ(ZC2 COS y COS Z (3.25) 

Expanding H(x, y, z) in a Fourier series in z, 

H(x, y, z)= ~ an(x, y )e  inz (3.26) 
n ~ o o  

we obtain the coefficients a,(x, y) 

a,(x, y)(exp{ in[ C i f ( y )  + B2 g(x)]  } - 1) 

= 6' n ( - i~Am c~l sin x -  ct A2c~cz -2- Y) 

(ic~al~B' sinx-c~A2~c2c~ y)  (3.27) 
+ 3_i . ,  2 

We obtain the same singularity structure as in Eq. (3.21) and therefore a 
consistent explanation for the central band of chaotic trajectories in Fig. 9. 
The meaning of Eq. (3.27) is that the surfaces are (order e) preserved under 
small perturbations, except at the intersection with the surface defined by 
the resonant condition (3.21). At the intersections, however, a local 
breakdown occurs. Consequently, the motion will follow the W e surfaces as 
long as it is far from the resonance sheets. At the resonance the "pseudo- 
regular" trajectory ff/e is scattered off to a different one W~,. Roughly 
speaking, the scattering processes induce a random walk among all W e 
that intersect the surface of the singularities. We call this phenomenon 
singularity-induced diffusion (SID). We stress that in the case of Tila we 
have chosen the functions f and g such that the resonant sheets defined by 
(3.21) are almost coincident with the family of invariant surfaces W e. Thus, 
only few W e surfaces are crossed by the first-order ( n =  1) resonances. 
Another extreme choice would allow almost all the surfaces to intersect 
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Fig. 12. The (x, y) slice of one trajectory for TII b. The small parameters are the same as in 
Fig. 9, while CI=B2=4. The dashed lines indicate the position of the (n,k)=(1,0) 
singularities of Eq. (3.21). 

with the first-order resonance sheet. Such an extreme is the map Til  b 
defined by setting f ( y )  = cos y, g(x) = sin x, and O 2 = C 1. In Fig. 12 only 
one trajectory of Tii  b is shown to cover the whole space. Notice that here 
e = 10 3, which is two orders of magnitude less than in the case of the par- 
tially chaotic A B C  map, as shown, for example, in Fig. 4. In intermediate 
cases the n = 1 resonance sheets do not intersect the whole W e family, but 
only a compact  fraction of it. However, since in the generic case higher 
order resonances are dense in the space, all the W e surfaces intersect at 
least one of the sheets. The effect of these higher order resonances is similar 
to that of the first-order ones, but it is manifested on longer time scales. 
Therefore, except for nongeneric maps, SID is able to reach any region of 
the space. While the mechanism is different, the effects of SID are similar to 
those produced by Arnold diffusion. The nature of the local breakdown of 
the adiabatic invariants will be analyzed in detail elsewhere. 

4. S U M M A R Y  AND CONCLUSIONS 

Due to the absence of canonical structure it is not trivial to extend the 
general results of the theory of Hamiltonian systems to 3D volume- 
preserving maps. However, combining the first steps of perturbation theory 
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with numerical evidence, we are in position to conjecture how this 
extension could work. First, a classification of the variables as action-like 
or angle-like according to their variability (slow for the former and fast for 
the later) proved to be useful for the understanding of the invariant 
structures close to integrability. The character of a given variable depends 
on the choice of the parameters. Disregarding the case of three actions, 
which is close to an autonomous 3D flow, and the case of three angles, 
which is generically chaotic, we are left with two types of maps: those 
containing one or two actions, respectively. For  the former, we found that 
the action labels a one-parameter family of invariant surfaces (2-tori). 
Perturbative expansions and numerical evidence allow us to conjecture that 
a version of the KAM theorem holds in this case. For  the second type, the 
integrable case is composed of a two-parameter (the two actions) family of 
invariant lines. The motion on those lines has a frequency that is 
degenerate along curves in the action plane. This degeneracy spoils the 
validity of the hypothesis of the KAM theorem and we do not expect a 
trivial extension of it to this case. However, we found that the adiabatic 
approximation provides us with a mechanism by which the broken lines 
regroup in invariant surfaces. The striking result is that those invariant 
surfaces survive when the coupling to the fast motion is increased. 
However, a cut in the surface appears due to the resonances of the fast 
motion. These resonances connect different invariant surfaces, giving rise to 
a new kind of Arnold diffusion, which we call singularity-induced diffusion. 
This diffusion is present no matter how small are the nonlinearities. 

These results have important consequences for the mixing of passive 
scalars. Whenever the fast motion is restricted to surfaces, low mixing 
efficiencies are expected due to the existence of KAM barriers. On the 
contrary, if this fast motion is confined to just one direction, passive scalars 
will be typically scattered by resonances and an enhancement of diffusion 
in some regions of the space will be present. 

We now propose an experimental realization for the enhanced trans- 
port phenomenon. Consider the two-vortex system proposed by Aref, but 
operating continuously. In the two-dimensional approximation this system 
is integrable and consequently a nonefficient stirrer. If instead of the 
blinking procedure we introduce a fast oscillatory flow in the third 
direction, the resonances associated with this motion will produce a 
diffusion of the particles, which could be controlled by adjusting the speed 
of the constantly (and slowly) moving agitators. Notice that in this design 
the tubes observed in Fig. 9 are equivalent to the vortices generated by the 
stirrers. 

We cannot ensure that the tubes we found in many stages of our 
investigation are similar to visualization fluid vortices. Assuming, however, 
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that both objects are of the same type, some features found in our models, 
such as the appearance of new tubes as A is increased through multiples of 
27z in TAlc, could be observed experimentally. 

Finally, we stress that due to the high codimension of this problem, 
the classification given above could be incomplete. Probably many new and 
interesting phenomena can be found in the extremely rich behavior of this 
kind of system. 

A P P E N D I X  A 

In the first part of this appendix we prove that for maps T that are 
reversible with respect to the involution S, the eigenvalues of Jacobians at 
Po and P'I = S o T(Po) are inverses of each other. We use the same notation 
as in Eqs. (2.15) and (2.16). Also, T S - S o T o S  -1 and therefore 
TS(p1) = P'I- The linearized maps give 

~3T[?0 r =2r ;  OTS[?lrs=2srs  (A1) 

where ~T[e denotes the Jacobian of T at P. Then 

OSI?'o ~?Tl?o 8S 117, . r s = 2 s r  s (A2) 

and taking ~?S?; to the rhs, we obtain an eigenvalue equation for ~Tl?o, 

OTI?oOS l [ p l r s = 2 s [ O S l e ; ] - l r s = / . s ~ S  llsFor s (A3) 

where in the last step we used 

3S -1 le = [~?SIs lp]-1 (A4) 

(A4) can be easily obtained by taking the Jacobian of So S l(p)  = p. From 
Eqs. (A1) and (A3) we see that OT and OT s have the same eigenvalues at 
Po and P~, respectively, whenever 

OS 11?1=~3S-~[?] (m5) 

Since 

T S = T  -I  and c3T 1 let = I-8TI?,I] -1 

we conclude that OT has inverse eigenvalues at Po and P'I. The condition 
(A5) is satisfied, for instance, if the Jacobian of S is constant or if the point 
P1 is a fixed point (P1 = P'~). 

In the following we show that the fixed points of the ABC map are 
grouped in pairs with inverse eigenvalues. Let us denote 

G 1 = B cos x; G2 = C c o s  y ;  G 3 = A cos z (A6) 
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Then the eigenvalues of ~?TAsc at the fixed points satisfy 

23-22(G,G2G3 +G~ +G~ +G~ + 3) 

+2(G~+G~+G~+3-G,G2G3)- 1 =0  (A7) 

It is easy to check that when the sign of G~G2G3 is inverted, Eq. (A7) 
becomes the equation for the inverse eigenvalue 1/2. Sign reversal for 
G~G2G3 can be obtained by a sign change of either one or all three Gi. As 
is obvious from Eq. (2.12), this only changes one fixed point into another. 
Therefore, for each fixed point there is another fixed point with inverse 
eigenvalues. Moreover, the eight fixed points can be classified into two 
groups of four according to sG=sign(GiG2G3). Only fixed points from 
opposite groups collide. 

A P P E N D I X  B 

Let us prove that in general a trajectory of the map cannot cross an 
invariant surface. Suppose there is a point P1 below the invariant plane Z" 
for which T(P1) is also below X. Moreover, suppose that, in contradiction 
with the statement we want to prove, there is another point P2 below S for 
which T(P2) is above S. Therefore, by continuity, there exists a point P* 
lying on the straight line that connects PI with P2 for which T(P*)~ 2," (see 
Fig. 13). However, this contradicts the fact that S is invariant, because 
P*6 Z'. The contradiction implies that either there are no points of type P1 
or none of type P2. But any fixed point is of type P1. Since generically 
there are fixed points for the integrable case somewhere in parameter space, 
by continuity we always have points of type P~. Therefore, there are no 
crossings of invariant planes and whenever those survive in the non- 
integrable regime one can be sure that there is no Arnold diffusion. 

iT(P2) 

P, 
Fig. 13. Trajectories of maps cannot cross invariant surfaces. 
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APPENDIX C 

In this appendix our aim is to derive a criterion for the onset of chaos 
using a Chirikov resonance overlap argument. We first estimate the size 
(in z) of the (0, 1, 0) resonance by calculating the distance between its 
separatrices. For  simplicity, the oscillation of the tube is neglected. 
Therefore, we use Eq. (3.9) to calculate on the x = 0 plane the distance A 
from the z = zr y-tube center to the last intersecting invariant planes. Using 
the notation Zl = zt + A, z 2 = r c -  A, we look for the maximal A for which 

Z 1 AI- eH(x, O) = z2 + ell(x, O) (c1) 

After some straightforward algebra the equation 

3 1 - c o s ( A s i n A )  
sin x = (C2) 

ecr B sin(A sin A) 

is obtained. Whenever the rhs is smaller than one, there is some x for 
which (C2) has a solution. Therefore, the maximal value of A, A m ,  is 
obtained when the rhs of (C2) is equal to 1. In the limit A ~ 0, the solution 
to (C2) is easily obtained, 

zJ m =- (2eotB/A )1/2 (C3) 

From Eq. (C3) we see that the approximation A ~ 0  is good whenever 
B ~ A .  The width Az of the resonance is related to A,,, and a lengthy but 
straightforward calculation gives Az ~ 3Am.  The overlap of the (0, 1, 0) and 
(0, - 1 ,  0) resonances on the x = 0 plane will happen when Az ~ ~/4. This 
will be used as an approximate criterion for the onset of chaos. 
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